Robotic grippers are useful in designing prosthetics and manufacturing. “Robotic hands often fall into two categories: simple and highly specialized grippers often used in manufacturing, and general and highly complicated grippers designed for a variety of tasks.” Ramond et al. [1] Within these two categories there are two main categories of research. These are hard structure and soft structure robotics. Hard structure robotics rely on a mechanical design with a motor or actuator to move a hard-linked part. Soft structure uses a mechanical design, soft material and a pneumatic pump to create the desired movement. The soft material is designed in a way that when it is pumped full of a fluid (i.e. air) it has a specific deformation. Hard robotics have an advantage in their ability to output a large force, but soft robotics have increased degrees of freedom. Dexterity (readiness and grace in physical movement) is another advantage over hard robotics. This project focuses on the process of designing actuators that can feasibly be used for devices falling into either of the two main categories of robotics. Such an actuator could be effectively implemented toward simple applications such as manufacturing-style gripping devices to advanced applications found in modern human prosthetics or areas where high dexterity combined with a delicate touch are required. The simulations show that the designs created work within a pressure range of 0.5 PSI to 1 PSI. This low pressure does not output a lot of force. The high dexterity and small air compressors needed make it a good design for use in areas like manufacturing or medical. If a stronger material was applied to these designs allowing the designs to handle higher pressures these designs could output much higher forces. This increase would make the designs more usable in areas like prosthetics and advanced robotics.

This content is only available via PDF.
You do not currently have access to this content.