Nitinol shape memory alloy is well known for its shape memory effect and super elastic effect. In the present work, the improvement of mechanical properties of nitinol alloy like yield strength, ultimate tensile strength and micro-hardness is discussed along with the study of evolution of micro-structure after every pass to extend the applications of shape memory alloys into high strength application areas. Severe plastic deformation processes are usually adopted for producing fine grain structures which improve the mechanical properties of a material. One such severe deformation process is constrained groove pressing, which is considered as one of the best severe plastic deformation techniques for sheet metals. The results of constrained groove pressing process on nitinol alloy show that the yield strength and the ultimate tensile strength have increased by about 3.6 times 2.5 times respectively, with an increment of 50% and 74% in micro-hardness after 1st pass of constrained groove pressing and 2nd pass of constrained groove pressing respectively. Microstructure shows increase in martensitic phase after constrained groove pressing processing. Increasing in twinning and grain boundary density can be observed in constrained groove pressing processed nitinol, which are the reasons for the tremendous increase in the strength of the alloy. Thus, the constrained groove pressing process on nitinol alloy can increase its range of application for high strength requirements.

This content is only available via PDF.
You do not currently have access to this content.