Corrosion fatigue growth behavior of structural steels at low cyclic frequency is characterized by an increase in crack growth rate in the threshold and Paris regions, due to the simultaneous action of cyclic mechanical load (fatigue) and corrosive environment. Knowledge on the effect of load sequence on corrosion fatigue crack growth is important to set out the realistic design and prognosis criteria for components operating under corrosive environments.

In this study, the corrosion fatigue crack growth rate under the effect of hold-time (1000s), at a maximum stress intensity factor (Kmax), interspersed during cyclic load on was studied experimentally on a Mn-Ni-Cr steel under 3.5% NaCl solution at a constant stress intensity factor range (ΔK) of 15 MPa √m; the corrosion crack growth rate was evaluated for three different frequencies of: 0.01, 0.1 and 1 Hz. As a result of hold time at the peak load, the exposure time for the crack-tip to interact with the environment increased, which could enhance the corrosion crack growth rates. To verify if this corrosion effect can be contained, electrode potential of (−) 850 mV and (−) 950 mV SCE was applied to the specimen to reduce the extent of corrosion contribution to crack growth rate.

The fatigue crack growth rate (da/dN) increased when the frequency was decreased from 1 to 0.01 Hz at all electrode potentials. However, the crack growth rate at 0.01 Hz increased by an order of magnitude with a tensile hold at Kmax for 1000 s compared with the crack growth rate during continuous cyclic load for a given electrode potential. The crack growth rate reduced when the electrode potential was decreased to −950 mV SCE. The enhancement of corrosion fatigue crack growth rate with the introduction of a hold-time is explained using crack-tip strain rate assisted anodic dissolution.

This content is only available via PDF.
You do not currently have access to this content.