Thin walled members such as square tubes are commonly used in vehicle’s frontal chassis to provide protection and damage attenuation to the passenger cabin in the case of impact loading. These structural members undergo progressive deformation under axial loading. The type of deformation mode is critical as it defines the overall configuration of force-displacement curve. There are different types of deformation modes for square tube under axial loading. Likewise, cellular structure exhibit distinct deformation modes under in-plane loading. The work presented here investigates the effects of partial or discrete bonding of cellular core structure on deformation modes of square tubes under axial loading. The results show that discrete bonding of cellular core with the tube has significant effect on progressive deformation of tubes and therefore, presents an opportunity to re-configure force-displacement curve for improved protection of automobile structures under impact loading.

This content is only available via PDF.
You do not currently have access to this content.