Gas turbine blades are subjected to elevated heat loads due to high temperature gases exiting the combustor section. Complex internal and external cooling techniques are employed in blades to protect them from the hot gases. Blades are equipped with internal cooling passages which are connected to each other by 180-degree bends. The coolant flow is typically from blade root-to-tip and blade tip-to-root. Further, since the blades are subjected to rotation, the fluid dynamics and heat transfer inside these serpentine channels get modified. Under the influence of Coriolis force and centrifugal buoyancy force induced by rotation, the heat transfer for radially outward flow enhances on the trailing side (pressure side) and reduces on the leading side (suction side). A reverse trend in heat transfer is observed for radially inward flow. This heat transfer trend leads to non-uniform blade temperature leading to increase in thermal-stresses. Prolonged operation under critical thermal stresses can lead to significant damage and increase in maintenance and overhaul. This paper presents a novel 8-passgae serpentine design, where passages are arranged along the chord of the blade which has similar heat transfer coefficient distribution on both leading and trailing walls. Detailed heat transfer coefficients were measured using transient liquid crystal thermography under stationary and rotating conditions. Heat transfer experiments were carried out for Reynolds numbers ranging from 14264 to 83616 under stationary conditions. Rotation experiments were carried out at Rotation number of 0.05. Heat transfer enhancement levels of approximately two times the Dittus-Boelter correlation (for developed flow in smooth tubes) were obtained under stationary conditions. Under rotating conditions, we found that the heat transfer levels on the leading and trailing sides were similar to each other and with the stationary condition. Some differences in heat transfer were observed on local level, when rotation cases were compared against the stationary cases.

This content is only available via PDF.
You do not currently have access to this content.