Oscillating flows and multiphase heat transfer processes frequently occur in many engineering and scientific applications and systems, as is the case in enhanced geothermal energy, CO2 sequestration and storage, and in evaporation in soil, to name a few. Nevertheless, modeling of such flows is a rather challenging task due to the complex interfacial dynamics among different phases and solid porous structures. Over the decades, several types of Lattice Boltzmann (LB) models for multiphase flows have been developed under different physical pictures, for example the color-gradient model, Single-Relaxation-Time (SRT) pseudopotential model, and the HSD model. In this study, a pseudopotential Multiple-Relaxation-Time (MRT) LBM simulation will be utilized to simulate incompressible oscillating flow and condensation in 2D porous media. Initially, the model will be used to optimize the porous structure in order to have the maximum condensation rate of water vapor. Subsequently, the effects of contacting angle, wettability, oscillating frequency and phase angle to the heat flux, the temperature field of porous media, and the condensation rate will be discussed. Moreover, a multiscale approach will be considered in order to couple the heat transfer in macroscale applications. It is expected that such an approach will provide a different perspective regarding the engineering applications involved with oscillating flow and multiphase heat transfer processes.

This content is only available via PDF.
You do not currently have access to this content.