During metal cutting, it is well known that the cutting temperature has great influence on the machined surface integrity, especially on the residual stress and machining defects. At present, a lot of analytical modeling work has been done on the cutting temperature of tool, chips and workpiece machined by the side cutting edge during end milling process. To the workpiece surface machined by the bottom cutting edge, the study of temperature modeling is rarely reported. Besides, as a new kind of particulate metal matrix composites (MMCs) with improved mechanical and physical properties, the machining study of in-situ TiB2/7050Al MMCs is not many and no analytical temperature modeling of MMCs has been published up to now. Our study aims to establish an analytical cutting temperature model of workpiece machined by the bottom cutting edge in end milling in-situ TiB2/7050Al MMCs. In this model, the moving heat source method was applied. To meet the actual cutting process, the effect of heating time was also taken into account. With validation, the temperature model shows good agreement with experimental results. It was found that the heat partition ratio conducted from the shear plane heat source to the workpiece increased linearly as thermal number increased, due to the influence of increasing heat conducted into chip by the side cutting edge. The proposed cutting temperature model was of great significance for both the temperature modeling work of end milling and study of Al-MMCs.

This content is only available via PDF.
You do not currently have access to this content.