Numerical investigations of using two different turbulence models of K-ε and K-ω on mixing characteristics of two confined jets in a crossflow at supercritical pressure have been performed. The confined jets were at 180 degrees from each other injecting into a round tube. The jet to crossflow mass flows ratio, r, was 2.96. Reynolds Averaged Navier Stokes (RANS) equations were solved using Siemens PLM CCM+ software. Results indicate higher mixing rate with K-ω turbulence model. Higher vorticity and lower turbulent kinetic energy are observed with k-ω turbulence model. Increased mixing indicate reduced velocity and pressure gradients and cooler fluid toward the tube wall.

This content is only available via PDF.
You do not currently have access to this content.