There are several industrial applications in which two phase solid-gas flows are involved. At times, pipe junctions are involved where flow split takes place. Present study consists of experimental investigation of turbulent gas-solid two-phase flow through horizontal pipe junctions. The effects of air flow rate, branch diameter and pipe orientation at junctions are investigated on mass fraction, phase split and solid particles distribution across the junctions. Silica powder, in the monodispersed size of 15 μm was injected into the pipelines by a micro-feeder. The powder was entrained in an air flow which passed horizontally through a long straight channel of circular pipe with T and Y junctions. The main pipe was 51mm in diameter while the inlet superficial velocity of gas was varied from 5 m/s to 13.5m/s. The particles mass concentration was measured by the aerodynamic particle sizer (APS). Experimental results showed that solid phase split followed air flow split while decreasing the inlet air velocity caused major decrease in the mass fraction at junction pipe. The orientation of junction pipe has a significant effect on the flow behavior along the pipe. These results indicate that the behavior of solid particles is a complex phenomenon in pipe flows.

This content is only available via PDF.
You do not currently have access to this content.