Surfactant-based fluids, SB fluids exhibit complex rheological behavior due to substantial structural change caused by the molecules self-assembled colloidal aggregation. Various factors affect their rheological properties. Among these factors, surfactant concentration, shear rate, temperature, and salinity are investigated. One of the most popular surfactants, Aromox® APA-T viscoelastic surfactant (VES) is examined. The study focuses on four different concentrations (1.5%, 2%, 3%, and 4%) over a shear rate ranging from 0.0526 sec−1 to 1944 sec−1 using Bohlin rheometer. For salinity effects, two brine solutions are used; 2 and 4% KCl while for temperature effects, a wide range from ambient temperature of 72°F up to 200°F is covered. The results show that SB fluids exhibit a complex rheological behavior due to its unique nature and the various structures form in the solution. In general, SB fluids at all concentrations exhibit a non-Newtonian pseudo-plastic shear thinning behavior. As the surfactant concentration and/or shear increases, a stronger shear thinning behavior can be seen. Increasing solution salinity promotes formation of rod-like micelles and increases its flexibility. Salinity affects micelles’ growth and their rheological behavior is very sensitive to the nature and structure of the added salt. Different molecular structures are formed; spherical micelles occur first and then increased shear rate and/or salinity promotes the formation of rod-like micelles. Later, rod-like micelles are aligned in the flow direction and form a large super ordered structure of micellar bundles or aggregates called shear induced structure (SIS). Different structures implies different rheological properties. Likewise, rheology improves with increasing temperature up to 100°F. Further increase in temperature reverses the effects and viscosity decreases. However, the effects of temperature and salinity diminish at higher shear rates. Furthermore, a rheology master curve is developed to further understand the rheological behavior of SB fluids and correlate rheological properties to its microscopic structure.
Skip Nav Destination
ASME 2018 International Mechanical Engineering Congress and Exposition
November 9–15, 2018
Pittsburgh, Pennsylvania, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5210-1
PROCEEDINGS PAPER
Rheological Characteristics of Surfactant-Based Fluids: A Comprehensive Study
Ahmed H. Kamel
Ahmed H. Kamel
University of Texas of the Permian Basin, Odessa, TX
Search for other works by this author on:
Ahmed H. Kamel
University of Texas of the Permian Basin, Odessa, TX
Paper No:
IMECE2018-86044, V007T09A034; 8 pages
Published Online:
January 15, 2019
Citation
Kamel, AH. "Rheological Characteristics of Surfactant-Based Fluids: A Comprehensive Study." Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 7: Fluids Engineering. Pittsburgh, Pennsylvania, USA. November 9–15, 2018. V007T09A034. ASME. https://doi.org/10.1115/IMECE2018-86044
Download citation file:
20
Views
Related Proceedings Papers
Related Articles
Rotational Rheometry of a Fumed Silica Lubricating Grease
J. Tribol (March,2020)
Rheological and Biophysical Properties of Living Fluids Under Shear: Active Suspensions of Synechocystis sp. CPCC 534
J. Fluids Eng (February,2022)
The Wall Effect in the Flow of Commercial Lubricating Greases
J. Tribol (July,2016)
Related Chapters
Processing/Structure/Properties Relationships in Polymer Blends for the Development of Functional Polymer Foams
Advances in Multidisciplinary Engineering
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Viscosity Measurements of Polymer Modified Asphalts
Polymer Modified Asphalt Binders