We teachers know that problem solving is a crucial skill for our students. It is indispensable for developing original and creative thinking. We also know that deep learning of engineering fact can be assisted by using non-conventional tools and heterodox ideas for teaching, learning and presenting technical concepts. On that sense, we propose that engineering students could learn how to solve hands-on problems from nature; in particular from the plant kingdom.

In addition, we engineers should not turn our back to nature. We should start a new voyage of discovery, seeking new landscapes with a different outlook. But how? The present paper presents an approach to integrate trees and plants into engineering education to learn problem solving hands-on experiences. The aim of this approach is to teach engineering design using trees in the local area with an emphasis on structural strategies. Students taking courses such as statics, dynamics, strength of materials, stress analysis, material science, and design courses can benefit tremendously from studying trees. Furthermore, this approach provides an exciting opportunity for students to understand the complexities of real world living systems, appreciate the genius of nature’s design, and develop methods to create sustainable designs.

We think that those kind of natural realistic problems are complex: they have conflicting objectives, multiple solution methods, non-engineering success criteria, non-engineering constraints, unanticipated issues, interactions, collaborative activity systems, and multiple forms of problem representation. From an educational point of view, using a tree can bring tremendous practical benefits for problem solving in engineering education. Trees are everywhere, and they can easily integrate them into the classroom. Trees offer unlimited potential for teaching and research. For example, each student will have a different tree, and there are plenty of them, so each problem will be original and creative for each student providing a genuine learning experience.

The present work puts on view a new development for teaching structural mechanics based on plant biomechanics, i.e. the study of the structural strategies of plants (and trees). The goal is to understand and emulate structures and functions of the plant kingdom to develop structural solutions in engineering. Therefore this paper presents teaching results and novel concepts for problem solving in engineering education, seeking new landscapes.

This content is only available via PDF.
You do not currently have access to this content.