This paper deals with tracking of desired yaw rate generated by the path planner of an Autonomous Ground Vehicle (AGV) in the presence of unmodeled dynamics, changes in operating conditions and parametric uncertainties. A mathematical model considering the dynamics of the test vehicle and the steering actuator was used for controller design. The estimate of the unknown part of dynamics, called the total disturbance, obtained from the Extended State Observer (ESO) was used by Sliding Mode Controller (SMC) to compensate the actual total disturbance. It was observed that the lower bound on the SMC switching gain depends on the ratio of total disturbance estimation error and assumed known part of the system dynamics. This allows the choice of a low value of SMC switching gain, which in turn resulted in reduced chattering amplitude. Further attenuation in chattering was achieved using a saturation function.
After simulating the designed controller in MATLAB-SIMULINK environment, the controller was validated in IPG: CarMaker® simulation platform over a large operating range by changing the mass distribution of the vehicle, speed of the vehicle, cornering stiffness of the tire and terrain friction coefficient. A look-up table was formulated for the maximum achievable yaw rate at different speeds, i.e., from 5 to 20 m/s, given the maximum steering angle input considering rollover and slip threshold while the terrain friction coefficient was also varied from 0.2 to 0.8. It was observed that the designed controller was robust to changes in operating conditions, parametric uncertainties and unmodeled dynamics.