The friction behavior of rolling ball machine components like linear ball bearings is very important to their functionality. For instance, differences in linear velocity of balls induces ball-to-ball contact in certain circumstances, resulting in significant increases and variations in friction. In this paper, an improved analytical formula for determining the linear velocity of balls in four-point-contact linear ball bearings is derived as a function of contact angle deviations and contact forces. The analytical formula is validated against a comprehensive friction model in the literature and shown to be in good agreement, while an oversimplified analytical model proposed by the authors in prior work is shown to be inaccurate. A case study is presented where insights gained from the derived analytical formula are used to mitigate velocity difference of balls in a linear ball bearing which otherwise would experience ball-to-ball contact.

This content is only available via PDF.
You do not currently have access to this content.