In order to eliminate occurrences of flutter of low pressure turbine blades it is necessary to understand the associated unsteady aerodynamics. For this reason, an experimental and numerical study of controlled flutter (travelling wave mode) in a linear turbine blade cascade oscillating in a torsional as well as translation motion is conducted. Unsteady aerodynamic forces and moments were measured on a subsonic eight-blade turbine cascade rig where central four blades are flexibly mounted each with two degrees of freedom. Thin blades in the cascade represent the tip section of the last stage rotor blades, which defines the turbine overall performance. A commercially available 3D CFD software ANSYS CFX is used to simulate the unsteady aerodynamic loading in the blade cascade. Experimental data and simulations are compared and influence of aerodynamic forces and moments on flutter is analysed.

This content is only available via PDF.
You do not currently have access to this content.