Recently, compression wear has become the preferred performance material for many athletes, where it has the effect of reducing the burden on the body by suppressing muscle vibrations and improves athletic performance by providing the body with suitable moderate pressure. This study concerns thigh sleeves formed of compression wear. The optimal level of compression is studied in order to improve athletic performance and reduce muscular strain. Subsequently, the mechanics of the thigh compression sleeve are discussed. Here, the optimal tensile rigidity of the sleeve, which is calculated using the Young’s modulus of the sleeve in the circumferential direction, is discussed with the aim of reducing muscular strain. The finite element method model is adopted to represent the thigh, which commonly experiences muscle strain during running. The model is constructed using a semi-circular shape, which represents the thigh cut in the transverse plane. The model consists of two solid components, which reflect the muscle (outer) and femur (inner), as well as a shell that covers the thigh. The model generates sinusoidal vibrations, which reflect human behavior when running in a uniaxial direction. The maximum shear strain is approximately half of the tensile rigidity of the sleeve. Indeed, the muscle is sufficiently soft that the tensile rigidity of the sleeve is generally smaller when there is little shear strain on the muscle. From these results, it is concluded that the maximum shear strain of the muscle decreases by almost half when covered by the thigh compression sleeve compared to when no thigh compression sleeve is worn. Furthermore, the shear strain of the muscle can be reduced by varying the tensile rigidity of the sleeve when the human is running. Finally, the tensile rigidity of the sleeve can be decreased to reduce the shear strain of the muscle as it softens.

This content is only available via PDF.
You do not currently have access to this content.