Breastfeeding provides both nutrients and immunities necessary for infant growth. Understanding the biomechanics of breastfeeding requires capturing both positive and negative pressures exerted by infants on the breast. This clinical experimental work utilizes thin, flexible pressure sensors to capture the positive oral pressures of 7 mother-infant dyads during breastfeeding while simultaneously measuring vacuum pressures and imaging of the infants oral cavity movement via ultrasound. Methods for denoising signals and evaluating ultrasound images are discussed. Changes and deformations on the nipple are evaluated. The results reveal that pressure from the infant’s maxilla and mandible are evenly distributed in an oscillatory pattern corresponding to the vacuum pressure patterns. Variations in nipple dimensions are considerably smaller than variations in either pressure but the ultrasound shows positive pressure dominates structural changes during breastfeeding. Clinical implications for infant-led milk expression and data processing are discussed.

This content is only available via PDF.
You do not currently have access to this content.