Deep hole drilling is required to install prosthetic devices in surgical implantation. Compared to the common bone drilling processes, deep hole bone drilling is performed with a larger hole depth (i.e., up to a depth of approximately 35 mm in cochlear implantation) using a high ratio of the length to diameter of the drill bit. For successful outcomes from this process, forces must be controlled adequately to avoid other complications such as drill-bit breakage or thermal necrosis. This study investigates the thrust force and torque generated in bone drilling process of up to 36 mm drilling depth. Drilling tests were performed on bovine cortical bone using 2.5 mm diameter twist drill bit with a spindle speed of 3000 rpm, and feed rates of 0.05, 0.075, and 0.1 mm/rev. Two distinct states in both the thrust force and torque data were observed for all conditions, which are called normal and abnormal states in this study. At an early stage of the drilling process, the force signals showed the traditional trend, reaching a constant value once the tip of the drill bit was fully engaged in bone cutting up to a certain depth. After that, both thrust force and torque kept increasing rapidly until the final drilling depth. This study also observed that the chip morphology varies with increasing drilling depth, showing fragmented chips at the normal state and powdery chips at the abnormal state. Chip clogging and increased frictional force between chips, tool, and hole wall with larger drilling depth may cause the abrupt increase in forces and variation in chip morphology.

This content is only available via PDF.
You do not currently have access to this content.