It is widely recognized that bone mineral content is a main contributor to cortical bone stiffness. Previous works by the authors revealed that stiffness of mid-diaphysis cortical bone increases with increasing radial position from interior to exterior regions. In this work, we correlate this radial cortical stiffness to the chemical composition of several bone rings cut from 2-year old bovine cow femur (collected fresh from butcher). This mineralization is quantified using energy-dispersive X-ray (EDX) spectroscopy. On each bone ring, five regions are assigned along a 4 mm radial line covering the entire cortical wall thickness. Locations along the radial distance are assigned to acquire the chemical analysis spectrum. Calcium (Ca) and Phosphorus (P) elements chemical elements are traced/detected. Measured mineralization results are expressed as per weight percent concentration (wt %). These elemental results for Calcium (Ca) and Phosphorus (P) are correlated to radial position and stiffness values using statistical analysis (SPSS®). Calcium (Ca) and Phosphorus (P) elements were positively correlated with stiffness values and radius whilst Ca/P ratio was almost constant with the radius. Findings suggest that with increasing radius, Ca (wt%) and P (wt %) showed a fairly increasing trend that correlates to increasing stiffness values proving that increased bone mineralization would contribute to cortical bone stiffness.

This content is only available via PDF.
You do not currently have access to this content.