Engineered tissue constructs are assembled through combining scaffolds, cells and biologically active molecules for restoring, maintaining, or improving damaged tissues or whole organs. Cells in engineered tissue constructs often experience mechanical forces during the fabrication process, maturation process, and under in vivo conditions. These mechanical forces/stimuli induce cellular responses and affect cell viability, proliferation, and differentiation. While it is critical to understand the mechanical milieu of cells in tissue constructs, it is also extremely challenging due to the time and length scale span. Multiscale modeling approaches have been emerged to provide linkage among different length scale. One of the approaches is continuum based multiscale modeling to link organ, tissue and cellular levels. A representative volume element (RVE) with periodic or random microstructure serves as a vehicle to connect different length scales. This study focuses on effects of RVE selection, microstructure, and boundary conditions on the mechanical environment at cellular level. In particular, cell embedded alginate tissue constructs were studied. Hyperelastic models were used for modeling alginate and cells. Multi-cellular FE models were generated. The results of the average properties and the stress/strain experienced by cells were compared under different conditions.

This content is only available via PDF.
You do not currently have access to this content.