CyberManufacturing System (CMS) is emerging as a new manufacturing paradigm and an integrated management approach, and it is capable of providing on-demand, data-driven, highly-collaborative, knowledge-intensive and sustainability-oriented manufacturing solutions. The recent developments in the Internet of Things, Cloud Computing, Service-Oriented Technologies, and Machine Learning, all contribute to the development of CMS. In CMS, each manufacturer is able to package their resources and capabilities into services and make them available to customers through pay-per-use pricing strategy. Associated capabilities such as computing and simulation resources, application software, know-hows, and expertise also become accessible to worldwide users via the Internet.

The manufacturing community is searching for sustainable manufacturing solutions to address environmental degradation and natural resource depletion issues. Sustainable manufacturing systems need to be socially and environmentally responsible as well as economically viable. CMS possesses advanced features — such as resource sharing, servitization and self-manage capabilities — suitable for addressing sustainability issues. This paper presents a framework of the CMS paradigm and performance analysis from the perspective of sustainability. An architecture is proposed to elaborate the constitutions of CMS and to make manufacturing operations transparent. Two case studies are used to illustrate (i) how initial manufacturing requests can be processed and met by a collection of production services and (ii) how the effectiveness of the proposed framework in addressing sustainability issues can be evaluated.

This content is only available via PDF.
You do not currently have access to this content.