The effects of stacking fault energy and hardness on the shear process during low-speed orthogonal metal cutting were examined in a designed experiment of 1680 tests in Copper Zinc (CU-ZN) alloys. Existing shear zone models were compared to the experimental results generated by a Videographic Quick Stop method.

Analysis of the data indicates that the onset of shear plane is more properly viewed as the activation of glide plane. This in turn is a result of the available slip planes, which are a function of the materials crystalline structure, the stacking fault energy and the dislocation density (i.e., the amount of work-hardening), as constrained by the tool’s rake face angle. Merchant’s Force Diagram is revised using an extension of the existing diagram to incorporate the material’s crystalline structure, incorporating well established dislocation theory.

This content is only available via PDF.
You do not currently have access to this content.