Renewable energy sources demands sustainable energy storage technologies through the incorporation of low-cost and environment-friendly materials. In this regard, cellulose nanocrystals (CN), which are needle-shaped nanostructure derived from cellulose-rich resources, are extracted by sulfuric acid hydrolysis of biomass and used as both template and binder for the construction of electrochemical capacitors electrodes. A composite material is synthetized comprising CN and a conjugated electroactive polymer (CEP) to overcome the electrical insulating properties of cellulose as well as to exploit enhanced electrochemical activity by increased electrode surface-area. A one-step in-situ film synthesis protocol is evaluated by performing simultaneous polymerization and film deposition. The effect of proportion of starting components are evaluated through statistical Response Surface Methodology towards optimizing the electrochemical performance. Depending on the mass proportion of the starting components, a conducting network could be created by surface coating of the CEP on the whiskers during polymerization. Electrochemical measurements suggest an increase in specific surface area by at least a factor of two relative to bare CEP as a consequence of the template role of cellulose. Therefore, adjustment of the proposed one-step synthesis parameters allows tuning the material properties to meet specific application requirements regarding electrochemical performance.

This content is only available via PDF.
You do not currently have access to this content.