Structures such as beams and plates can produce unwanted noise and vibration. An emerging technique can reduce noise and vibration without any additional weight or cost. This method focuses on creating two dimples in the same and opposite direction on a beam’s surface where the effect of dimples on its natural frequencies is the problem of interest. The change in the natural frequency between both cases have a different trend. The strategic approach to calculate natural frequencies is as follows: first, a boundary value model (BVM) is developed for a beam with two dimples and subject to various boundary conditions using Hamilton’s Variational Principle. Differential equations describing the motion of each segment are presented. Beam natural frequencies and mode shapes are obtained using a numerical solution of the differential equations. A finite element method (FEM) is used to model the dimpled beam and verify the natural frequencies of the BVM. Both methods are also validated experimentally. The experimental results show a good agreement with the BVM and FEM results. A fixed-fixed beam with two dimples in the same and opposite direction is considered as an example in order to compute its natural frequencies and mode shapes. The effect of dimple locations and angles on the natural frequencies are investigated. The natural frequencies of each case represent a greater sensitivity to change in dimple angle for dimples placed at high modal strain energy regions of a uniform beam.
Skip Nav Destination
ASME 2017 International Mechanical Engineering Congress and Exposition
November 3–9, 2017
Tampa, Florida, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5848-6
PROCEEDINGS PAPER
Development of an Analytical Model for Beams With Two Dimples in Opposing Direction
Mofareh Ghazwani,
Mofareh Ghazwani
Western Michigan University, Kalamazoo, MI
Search for other works by this author on:
Kyle Myers,
Kyle Myers
Penn State State College, State College, PA
Search for other works by this author on:
Koorosh Naghshineh
Koorosh Naghshineh
Western Michigan University, Kalamazoo, MI
Search for other works by this author on:
Mofareh Ghazwani
Western Michigan University, Kalamazoo, MI
Kyle Myers
Penn State State College, State College, PA
Koorosh Naghshineh
Western Michigan University, Kalamazoo, MI
Paper No:
IMECE2017-70631, V013T01A002; 9 pages
Published Online:
January 10, 2018
Citation
Ghazwani, M, Myers, K, & Naghshineh, K. "Development of an Analytical Model for Beams With Two Dimples in Opposing Direction." Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 13: Acoustics, Vibration and Phononics. Tampa, Florida, USA. November 3–9, 2017. V013T01A002. ASME. https://doi.org/10.1115/IMECE2017-70631
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Trefftz Finite Element Method and Its Applications
Appl. Mech. Rev (September,2005)
Free Vibration Analysis of a Circular Plate With Multiple Circular Holes by Using Indirect BIEM and Addition Theorem
J. Appl. Mech (January,2011)
Exact Solutions for Free-Vibration Analysis of Rectangular Plates Using Bessel Functions
J. Appl. Mech (November,2007)
Related Chapters
Approximate Analysis of Plates
Design of Plate and Shell Structures
Fundamentals of Finite Element and Finite Volume Methods
Compact Heat Exchangers: Analysis, Design and Optimization using FEM and CFD Approach
Hydrodynamic Mass, Natural Frequencies and Mode Shapes
Flow-Induced Vibration Handbook for Nuclear and Process Equipment