This work demonstrates the manufacturing process of micro- and nanofluidic devices consisting of independent, aligned carbon pipes with potential applications as micro- and nanoscale dispensing systems, electrodes, and tools with which to study fundamental micro- and nanofluidics. A low-cost, high-throughput chemical vapor deposition (CVD) process was utilized to deposit carbon within novel silica-based templates. This simple template-based manufacturing process allows the carbon devices to be integrated into millimeter scale silica-based templates without micro- or nanoassembly, facilitating commercialization. Furthermore, the carbon-based devices were designed to readily integrate into standard laboratory equipment, promoting broad utilization. Herein, a repeatable methodology for fabricating multifunctional, carbon-based micro- and nanofluidic devices as well as establishing relationships between parameters at each stage of fabrication and the final geometry, including diameter and wall thickness of the carbon structures, of the device is presented.

This content is only available via PDF.
You do not currently have access to this content.