The structural integrity of multi-layered material depends on the mechanical properties and the fracture behaviour at the interface. The sudden jump in mechanical properties across the interface is the major source of failure in layered materials. An accurate evaluation of mixed-mode SIFs becomes essential for safe design of layered structure components. In this work, extended finite element method (XFEM) has been used to analyze interfacial cracked three-dimensional structures under mechanical loading. In XFEM, partition of unity enrichment concept is used to model a crack e.g. a crack surface is modeled by Heaviside enrichment function whereas a crack front is modeled by branch enrichment functions. Discontinuity due the presence of bi-material interface is modeled by the signed distance function. Modified domain based interaction integral approach has been used to evaluate the individual stress intensity factors. Three-dimensional cylindrical domain having an interfacial crack is taken for the simulations. A comparative analysis has been performed with and without an interface for an embedded penny shape crack. The effect of material interface on the SIFs has been analyzed in detail. Finally, a three-dimensional interfacial crack growth simulation has been performed for arbitrary shape crack.

This content is only available via PDF.
You do not currently have access to this content.