This work presents a theoretical and numerical analysis of thermal energy storage obtained from Phase Change Materials. We start with a study of the early stages of natural convection in the liquid, followed by an analysis of the entire duration of the melting process. Both are based on scale analysis. The numerical simulations cover the entire process, and validate all the features predicted by theory. Next we apply the methodology to the design of an efficient storage system made of a tank filled with a Phase Change Material like paraffin wax. A hot fluid circulates through pipes located within the tank; it is heated by means of a solar panel. The total volume of tubes is fixed. We apply Constructal design to determine the optimal allocation of the hot tubes so that each transfer mode is used at the best moment. We demonstrate that the overall energetic performance can be improved by endowing the system with freedom to morph.

This content is only available via PDF.
You do not currently have access to this content.