The combustion and NO formation characteristics of coal particles of different size distributions in a laminar gas flow were investigated by numerical simulation. The variation of coal particle size distribution was obtained by changing the mass ratio of small-sized coal to large-sized coal. The gas-phase combustion was modeled using GRI-Mech 3.0. The particle motion was simulated using a trajectory model. The results show that the coal particle size distribution has a significant impact on combustion process and NO distribution. Coal particles of uniform size at either 105 or 75 μm results in a higher NO concentration than coal consisting of both the large and the small particles. The smaller-sized coal particles experience a rapid volatile release, a higher maximum gas temperature, and a higher maximum NO concentration. Increasing the mass ratio of the smaller-sized coal particles changes the gas temperature and the averaged NO distribution and lowers the maximum NO concentration.

This content is only available via PDF.
You do not currently have access to this content.