A number of cars are found to have an unconventional radiator. The radiator is placed at the back of the car instead of front, for which the radiator does not get the incoming airflow to cool the engine down and the engine gets overheated very easily. In order to deal with this problem, a channel has mounted at the top of the vehicle to navigate incoming air flow and direct it through the radiator to cool down the engine. The channel that is provided has three cases, which will indicate the different way of studying this problem. Both steady and transient state analysis has been performed. Each case has its own characteristics. For example, a longer channel creates little circulation but more axial flow towards the radiator, while shorter channel creates smooth but less axial flow towards the radiator. All these cases in the steady state have the same domain and will have similar inlet variables like velocity, shape, size, and position. However, the domain geometry was slightly changed for transient state scenario.

At steady state simulation, most of the circulation were shown in the left-mid plane especially in longer channels. On the other hand, the transient state gives more uniform flow distribution. For longer channels in transient case, the flow is symmetric and smooth. The results were all made and developed in ANSYS for the final design where the data were simulated.

This content is only available via PDF.
You do not currently have access to this content.