Computational Fluid Dynamics (CFD) models allows the three-dimensional simulation of the complex electrochemical, fluid dynamics, and thermodynamic phenomena related to the temperature and pressure distribution in the channels and the porous media than occurs inside the fuel. This work presents a CFD Multiphysics simulation of a PEM Fuel Cell under different operational conditions in their inlet streams. The simulation was done by using COMSOL Multiphysics® software, and it takes into account the mass transfer of gases in the channels, the porous media and the electrochemistry from reactions in a 5 cm2 active area. From the electrochemical perspective, the relationship between the charge transfer and the overpotentials are taken into account by kinetic expressions. In addition, the ohm’s law is applied in conjunction with the charge transfer to describe the conduction of current in the electrodes and electrolytes. Gas diffusion layers (GDL) along with the catalyst layers are modeled as porous media restricting the electrochemical reaction. As the result of different simulation scenarios representing different operational conditions, the characteristic Polarization Curve of the fuel cell, the dependence between the voltage in the cell, and the demanded current by the load are obtained. A reduction in the electrical potential was evidenced due to the reaction activation potential, the ohmic losses due to the electrical resistance of the materials and the concentration losses as a result of deficiencies in the diffusion of the reactants through the porous medium. Currents distributions and water content are analyzed in order to understand the role of temperature, load, and humidity over the fuel cell performance.
Skip Nav Destination
ASME 2017 International Mechanical Engineering Congress and Exposition
November 3–9, 2017
Tampa, Florida, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5841-7
PROCEEDINGS PAPER
CFD Multiphysics Modeling and Performance Evaluation of PEM Fuel Cells
Victor Fontalvo,
Victor Fontalvo
Universidad del Norte, Barranquilla, Colombia
Search for other works by this author on:
Danny Illera,
Danny Illera
Universidad del Norte, Barranquilla, Colombia
Search for other works by this author on:
Humberto Gómez,
Humberto Gómez
Universidad del Norte, Barranquilla, Colombia
Search for other works by this author on:
Marco Sanjuan
Marco Sanjuan
Universidad del Norte, Barranquilla, Colombia
Search for other works by this author on:
Victor Fontalvo
Universidad del Norte, Barranquilla, Colombia
Danny Illera
Universidad del Norte, Barranquilla, Colombia
Humberto Gómez
Universidad del Norte, Barranquilla, Colombia
Marco Sanjuan
Universidad del Norte, Barranquilla, Colombia
Paper No:
IMECE2017-72160, V006T08A067; 7 pages
Published Online:
January 10, 2018
Citation
Fontalvo, V, Illera, D, Gómez, H, & Sanjuan, M. "CFD Multiphysics Modeling and Performance Evaluation of PEM Fuel Cells." Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 6: Energy. Tampa, Florida, USA. November 3–9, 2017. V006T08A067. ASME. https://doi.org/10.1115/IMECE2017-72160
Download citation file:
26
Views
Related Proceedings Papers
Related Articles
Multi-Resolution PEM Fuel Cell Model Validation and Accuracy Analysis
J. Fuel Cell Sci. Technol (February,2006)
Macroscopic Modeling of a PEFC System Based on Equivalent Circuits of Fuel and Oxidant Supply
J. Fuel Cell Sci. Technol (February,2008)
Electrical Performance of PEM Fuel Cells With Different Gas Diffusion Layers
J. Fuel Cell Sci. Technol (August,2011)
Related Chapters
Joint Polarization Information for Fast Multi-Target Localization in Bistatic MIMO Radar System
International Symposium on Information Engineering and Electronic Commerce, 3rd (IEEC 2011)
Mathematical Background
Vibrations of Linear Piezostructures
Effects of Metallic Plate and Objects on Performance of Inverted F Antenna for ISM Band Application
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)