This work investigates the modeling and simulation of the dynamic response of MEMS shallow arches under the combined effects of mechanical shock waves and electrostatic actuating forces. The possible instabilities and/or failures that can be considered in any reliability study of such bi-stable structures are numerically examined. The results demonstrate that the simultaneous effects of shock loads and the actuating force can make the bi-stability and/or the instability thresholds of electrically actuated MEMS arches devices much lower than the predicted values when considering their effects independently. The outcomes of this investigation can be very useful to design smart MEMS bi-stable sensors/accelerometers activated at a pre-programmed level of shock and/or abrupt change in the acceleration.

This content is only available via PDF.
You do not currently have access to this content.