The main objective of the paper is to investigate wave impact forces from breaking waves on a monopile substructure for offshore wind turbine in shallow waters. This study examines the load assessment parameters relevant for breaking wave forces on a vertical circular cylinder subjected to breaking waves. Experiments are conducted in a shallow water flume and the wave generation is based on piston type wave maker. The experiments are performed with a vertical circular cylinder with diameter, D = 0.20m which represents a monopile substructure for offshore wind turbines with regular waves of frequencies around 0.8Hz. The experimental setup consists of a 1/10 slope followed by a horizontal bed portion with a water depth of 0.8m. Plunging breaking waves are generated and free surface elevations are measured at different locations along the wave tank from wave paddle to the cylinder in order to find the breaking characteristics. Wave impact pressures are measured on the cylinder at eight different vertical positions along the height of the cylinder under breaking waves for different environmental conditions. The wave impact pressures and wave surface elevations in the vicinity of the cylinder during the impact for three different wave conditions are presented and discussed.

This content is only available via PDF.
You do not currently have access to this content.