A 3D finite element model to predict the stress state and tear propagation on the human aorta is presented. The human aorta is modeled as a three-layered hyperelastic cylindrical shell with a radial tear in the intima layer and circumferential tear in the media layer. The ultimate strength and fracture energy required for the onset of crack propagation is obtained from the literature and used as an input to the simulations. The effect of depth and length of the tear on the critical pressure show that the critical pressure decreases when tear length and depth increase. The variation of von Mises stress on the aortic layers due to crack propagation is investigated. This study will provide additional insight into the mechanics of aortic dissection (AD) with the possibility of being used in designing new clinical protocols.

This content is only available via PDF.
You do not currently have access to this content.