Facial paralysis affects hundreds of thousands of people each year; a common result of infection, trauma, stroke, and Bell’s palsy, among others. Achieving facial prosthetics that are lightweight, comfortable, aesthetically pleasing, energy efficient, and that allow human-like facial motion is a challenge. This study focuses on examining the feasibility of the use of a shape memory alloy as a means of low-power artificial muscles. Nitinol is a shape memory alloy (SMA) that can recover up to four percent of its original length when exposed to either a large enough change in temperature which can be controlled via electrical current or a stress. In this work, human eyelid muscles are replicated using Nitinol embedded in silicon. Silicone is used due to its elasticity, texture, flexibility, compatibility and ease of manufacturing. A mold is created based on human facial geometry around the orbital using a 3D printer. Based on average human eyelid dimensions, as well as the contraction properties of the Nitinol wire, an elliptical equation is used determine the length of wire required to completely close the eyelid from an open position. Temperature change of the system is controlled by modulating current through the resistive Nitinol wire. The contraction and expansion times of the eyelids are measured. The circuit is then optimized so that response times mimicked that of the human eyelid. Finally, based on the amount of times the average human blinks, the average daily power consumption is calculated. Future directions including miniaturization of the control system, bonding between SMA wires and silicone, and energy management are discussed.

This content is only available via PDF.
You do not currently have access to this content.