Electron Beam Additive Manufacturing (EBAM) is one of the emerging additive manufacturing (AM) technologies that is uniquely capable of making full density metallic components using layer-by-layer fabrication method. To build each layer, the process includes powder spreading, pre-heating, melting, and solidification. The thermal and material properties involved in the EBAM process play a vital role to determine the part quality, reliability, and energy efficiency. Therefore, characterizing the properties and understanding the correlations among the process parameters are incumbent to evaluate the performance of the EBAM process. In this study, a three dimensional computational fluid dynamics (CFD) model with Ti-6Al-4V powder has been developed incorporating the temperature-dependent thermal properties and a moving conical volumetric heat source with Gaussian distribution to conduct the simulations of the EBAM process. The melt-pool dynamics and its thermal behavior have been investigated numerically using a CFD solver and results for temperature profile, cooling rate, variation in density, thermal conductivity, specific heat capacity, and enthalpy have been obtained for a particular set of electron beam specifications.

You do not currently have access to this content.