Finite element simulation of composite materials is still challenging as anisotropy of the material brings difficulty in accurately identifying shear properties for modeling. In this study, ±45° tensile tests, Iosipescu shear tests, rail shear tests and Arcan shear tests are conducted to obtain the engineering shear stress-strain curve of woven fiber reinforced polymer. Digital image correlation method is adopted to obtain the strain field of the specimens. It is indicated that Iosipescu shear tests introduce a strain field close to pure shear state while the other three test types introduce relatively large tensile strain or compressive strain. Shear properties obtained from Iosipescu tests are used to calibrate an extensively used composite material model, Matzenmiller-Lubliner-Taylor (MLT) model. The calibrated MLT model is then verified by simulating Arcan tests with different loading angles. The simulations indicate that MLT model gives reliable predictions on Arcan tests with smaller loading angles, while it overestimates the force-displacement responses at larger loading angles.

This content is only available via PDF.
You do not currently have access to this content.