This work focuses on the effect of using sandblasted Aluminum 5052 H36 sheets as reinforcement in fiber metal laminates (FMLs) containing glass fiber - kevlar epoxy layers and glass fiber - carbon fiber epoxy layers. Two sets of 9 layered composites were fabricated using compression moulding technique as follows 1) Sand blasted Aluminum 5052 H36 sheet, S-Glass fiber, Kevlar fiber, with epoxy matrix. 2) Sand blasted Aluminum 5052 H36 sheet, S-Glass fiber, carbon fiber with epoxy matrix. Flexural experimentation of the composites was done to investigate delamination under bending loads. Izod Impact studies were performed to determine the notch toughness of the composites and also to study the debonding under impact loading. Flexural results revealed no delamination between the sandblasted Aluminum 5052 H36 - fiber interlayers owing to the increase in the surface roughness of the duralumin sheets through sand blasting, while pronounced delamination was observed between fiber - fiber interlayers. Impact testing of the composite also showed no delamination between Aluminum 5052 H36 - fiber interlayers and a brittle fracture surface was observed. Thus sand blasting of the Aluminum 5052 H36 layers proves to be a beneficial technique in overcoming the inherent problem of delamination in FMLs.

This content is only available via PDF.
You do not currently have access to this content.