Using molecular dynamics (MD) simulations, we explore the structural stability and mechanical integrity of phosphorene nanotubes (PNTs), where the intrinsic strain in the tubular PNT structure plays an important role. It is proposed that the atomic structure of larger-diameter armchair PNTs (armPNTs) can remain stable at higher temperature, but the high intrinsic strain in the hoop direction renders zigzag PNTs (zigPNTs) less favorable. The mechanical properties of PNTs, including the Young’s modulus and fracture strength, are sensitive to the diameter, showing a size dependence. A simple model is proposed to express the Young’s modulus as a function of the intrinsic axial strain which in turns depends on the diameter of PNTs. In addition, the compressive buckling of armPNTs is length-dependent, whose instability modes transit from column buckling to shell buckling are observed as the ratio of diameter/length increases.

This content is only available via PDF.
You do not currently have access to this content.