This paper presents a numerical study of different geometries of cruciform specimens for biaxial tensile tests. The aim of these specimens is to be used on fixtures for biaxial tests mounted in universal testing machines. For the study, a model of isotropic material for steel sheet metal specimens was considered. Thus, only the mechanical properties of the sheet metal in the rolling direction were considered in the simulations. In this numerical analysis, the normal stress distribution and the consequent shear stress were studied. Additionally, the effect of the inclusion of multiple slots as well as a thickness reduction on the normal and shear stresses were assessed. Hence, a specimen in which a uniform normal stress distribution with zero shear stress, is necessary. The results of the analysis show that a specimen with features, multiple slots and a thickness reduction in the central area, provides a better performance in the simulations than dismissing any of these characteristics. Finally, a specimen model suitable for the mentioned test is proposed according to the obtained numerical results and the feasibility of manufacture of the experimental sample-test.

This content is only available via PDF.
You do not currently have access to this content.