Metamaterials demonstrate unique frequency dependent responses due to the presence of internal resonators; hence, it can be used to filter, absorb, cloak, or otherwise manipulate waves in unique ways. However, its applicability is normally limited to a very narrow frequency range (bandwidth) due to a dependency on linear resonance. The applications of these linear metamaterials are limited when used under the broadband excitation spectra that are common in real life applications. This paper numerically investigates the effect of introducing the two main classes of Duffing type cubic nonlinearities, namely monostable and bistable, on the attenuation bandwidth of an elasto-dynamic metamaterial.
From the analysis, it is found that the attenuation bandwidth of a bistable nonlinear system is two to three times wider than that of an equivalent linear system; whereas, in case of a monostable system the bandwidth is remained same. In both cases, the attenuation bandwidth shifts towards the higher end of the frequency spectra and for higher nonlinearity and excitation amplitude, second transmission zone completely vanishes.