Validation of surface mounted electronic devices for drop test performance is considered as one of the most challenging tasks for researchers to search for key dynamic parameters either by experimentation or by numerical simulation. It has not only become challenging task to capture some of the important parameters that affect board flexural rigidity, stiffness, dynamic stresses and strains, but also avoid stress concentrations near undesired locations resulting in non-uniform strain distribution throughout the test board. There is a requirement to simulate exact drop condition that quantifies high impact energy on the board and also control drop to improve the board surface stress/strain distribution measured should be independent from standoff stress region. In this paper, an effort to find the importance of viscous and linear hysteric damping characteristics on uniform board response has been made. The influence of damped responses during no ring impact has been analyzed.
Two different types of computational models are developed and an approximate FEA numerical solutions are obtained to compare current JEDEC test board and alternative hexagonal boards at reduced computational time and challenging experimental cost. The effect of board responses with two types of linear damping models are considered to study the effect. An approach towards finding key parameters that affect stress/strain distribution under both free as well as constrained model has been made, with including different pulse shapes parameters into effect. Maximum board strains are validated and compared using Global FEA model and maximum stresses on the components are evaluated using cut boundary interpolation method. Comparative to empirical results data, an effort to improve uniform stress strain distribution of package solder joints has been made and results are correlated.