Two-phase spray cooling has been an emerging thermal management technique offering high heat transfer coefficients (HTCs) and critical heat flux (CHF) levels, near-uniform surface temperatures, and efficient coolant usage that enables to design of compact and lightweight systems. Due to these capabilities, spray cooling is a promising approach for high heat flux applications in computing, power electronics, and optics. The two-phase spray cooling inherently depends on saturation temperature-pressure relationships of the working fluid to take advantage of high heat transfer rates associated with liquid-vapor phase change. When a certain application requires strict temperature and/or pressure conditions, thermophysical properties of the working fluid play a critical role in attaining proper efficiency, reliability, or packaging structure. However, some of the commonly used working fluids today, including refrigerants and dielectric liquids, have relatively poor properties and heat transfer performance. In such cases, utilizing binary mixtures to tune working fluid properties becomes an alternative approach.
This study aimed to conduct an initial investigation on the spray cooling characteristics of practically important binary mixtures and demonstrate their capability for challenging high heat flux applications. The working fluid, water/2-propanol binary mixture at various concentration levels, specifically at x1 (liquid mass fraction of 2-proponal in water) of 0.0 (pure water), 0.25, 0.50, 0.879 (azeotropic mixture) and 1.0, represented both non-azeotropic and azeotropic cases. Tests were performed on a closed loop spray cooling system using a pressure atomized spray nozzle with a constant liquid flow rate at corresponding 20°C subcooling conditions and 1 Atm pressure. A copper test section measuring 10 mm × 10 mm × 2 mm with a plain, smooth surface simulated high heat flux source. Experimental procedure involved controlling the heat flux in increasing steps, and recording the steady-state temperatures to obtain cooling curves in the form of surface superheat vs heat flux. The obtained results showed that pure water (x1 = 0.0) and 2-propanol (x1 = 1.0) provide the highest and lowest heat transfer performance, respectively. At a given heat flux level, the HTC values indicated strong dependence on x1, where the HTCs depress proportional to the concentration difference between the liquid and vapor phases. The CHF values sharply decreased at x1≥ 0.25.