Recent advances in blade design involve the development of backward swept blades, which can increase energy capture that minimizes an increase in the turbine loads by bend-twist coupling deformation. Most of the aerodynamics simulation modules in aeroelastic analyses are based on Blade Element Momentum Theory, which is limited to straight blades and does not account for sweep. The goal of this work is to develop higher fidelity aerodynamic simulation method for swept wind turbine. The vortex lattice method (VLM) with lower computational cost can consider the effects of spanwise flow, dynamic inflow and wake. A VLM code was obtained and validated for an elliptical planform wing with analytical solutions. Unfortunately, the VLM dose not consider viscous effects such as skin friction and form drag due to inherently assumption of potential flow; therefore, it is limited to be applied to wind turbine blades with thick airfoils. A numerical methodology named viscous correction method (VCM) considering viscosity was developed for predicting the aerodynamic force of wind turbine blades. Experimental results that include viscous terms are brought in the iteration of VLM to modify the vortex strength of all the vortex lattices, so that skin friction and form drag can be included. Lots of wind tunnel experimental results on NREL phase VI rotor with two straight blades have been published, which were chosen to validate the VCM. Good qualitative agreement is obtained between computated and experimental results when VCM is introduced into VLM. To apply VCM to swept blade, it is still high-cost work to conduct lots of experiments on the swept blade strips with different sweep angles and airfoils. Furthermore, one correction model was also developed to compute the aerodynamic force of swept blade from experimental results of straight blade, which is named sweep correction model (SCM). The SCM is obtained by theoretical derivation and validated by CFD method. Finally, the vortex lattice method with VCM and SCM was applied to NREL 5MW rotor with two swept blade designs and baseline blade. The effects of sweep on power and load are minor if the effects of structure deformation are not involved.
Skip Nav Destination
ASME 2016 International Mechanical Engineering Congress and Exposition
November 11–17, 2016
Phoenix, Arizona, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5061-9
PROCEEDINGS PAPER
Aerodynamics Simulation Method for Swept Wind Turbine Blades Based on Improved Vortex Lattice Method Available to Purchase
Guangxing Wu,
Guangxing Wu
Chinese Academy of Sciences, Beijing, China
Search for other works by this author on:
Lei Zhang
Lei Zhang
Chinese Academy of Sciences, Beijing, China
Search for other works by this author on:
Guangxing Wu
Chinese Academy of Sciences, Beijing, China
Lei Zhang
Chinese Academy of Sciences, Beijing, China
Paper No:
IMECE2016-65469, V007T09A087; 10 pages
Published Online:
February 8, 2017
Citation
Wu, G, & Zhang, L. "Aerodynamics Simulation Method for Swept Wind Turbine Blades Based on Improved Vortex Lattice Method." Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Volume 7: Fluids Engineering. Phoenix, Arizona, USA. November 11–17, 2016. V007T09A087. ASME. https://doi.org/10.1115/IMECE2016-65469
Download citation file:
31
Views
Related Proceedings Papers
Related Articles
Review Paper on Wind Turbine Aerodynamics
J. Fluids Eng (November,2011)
A Correlation-Based Transition Model Using Local Variables—Part II:
Test Cases and Industrial Applications
J. Turbomach (January,0001)
Peak and Post-Peak Power Aerodynamics from Phase VI NASA Ames Wind Turbine Data
J. Sol. Energy Eng (May,2005)
Related Chapters
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Wind Turbine Airfoils and Rotor Wakes
Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design