Thermal energy storage units are vital for development of the efficient solar power generation systems due to fluctuating nature of daily and seasonal solar radiations. Two available efficient and practical options to store and release solar energy at high temperatures are latent heat storage and thermochemical storage. Latent heat storage can operate only at single phase change temperature. This problem can be avoided by some of the thermochemical storage systems in which solar energy can be stored and released over a range of high temperature by endothermic and exothermic reactions. One such reaction system is reversible reaction involving dehydration of Ca(OH)2 and hydration of CaO. This system is considered in the present study to model a circular fixed bed reactor for storage and release of heat at high temperatures. Air is used as heat transfer fluid (HTF) flowing in an annular shell outside the bed for charging and discharging the bed. The bed is filled with CaO/Ca(OH)2 powders with particles diameter of the order 5μm. Three dimensional transient model has been developed and simulations are performed using finite elements based COMSOL Multiphysics. Conservation of mass and energy equations, coupled with reaction kinetics equations, are solved in the three dimensional porous bed and the heat transfer fluid channel. Parametric study is performed by varying HTF parameters, bed dimensions and process conditions. The results are verified through a qualitative comparison with experimental and simulation results in the literature for similar geometric configurations.

This content is only available via PDF.
You do not currently have access to this content.