A parametric modeling study has been carried out to investigate the effect of change in operating conditions on VRFB performance. The objective of this research is to develop a computer program to predict the dynamic behavior of single cell VRFB combining fluid mechanics, reaction kinetics, and electric circuit. This paper deals with the exact solutions obtained by solving the governing differential equations of VRFB by using Maple 2015. Calculations were made under electrolyte concentrations of 1M–3M of V2+, charging-discharging current of 1.85A–3.85A, and tank to cell ratio of 5:1 to 10:1. Results show that the discharging time increases from 2.2 hours to 6.7 hours when the value of electrolytes concentration of V2+ increases from 1M to 3M. However, the charging time decreases from 6.9 hours to 3.3 hours with the increment of applied current from 1.85A to 3.85A. Additionally, when the tank to cell ratio is increased from 5:1 to 10:1, the charging-discharging time increased from 4.5 hours to 8.2 hours. Ampere-hour capacity of the cell was found to increase when molar concentration of vanadium and, tank to cell ratio were increased.

This content is only available via PDF.
You do not currently have access to this content.