As society moves into the digital age, the expectation of instantaneous electricity at the flip of a switch is more prominent than ever. The traditional electric grid has become outdated and Smart Grids are being developed to deliver reliable and efficient energy to consumers. However, the costs involved with implementing their infrastructure often limits research to theoretical models.

As a result, an undergraduate capstone design team constructed a small-scale 12 VDC version to be used in conjunction with classroom and research activities. In this model Smart Grid, two houses act as residential consumers, an industrial building serves as a high-load demand device, and a lead-acid battery connected to a 120 VAC wall outlet simulates fossil fuel power plants. A smaller lead-acid battery provides a microgrid source while a photovoltaic solar panel adds renewable energy into the mix and can charge either lead-acid battery. All components are connected to a National Instruments CompactRIO system while being controlled and monitored via a LabVIEW software program. The resulting Smart Grid can run independently based on constraints related to energy demand, cost, efficiency, and environmental impact. Results are shown demonstrating choices based on these constraints, including a corresponding weighting according to controller objectives.

This content is only available via PDF.
You do not currently have access to this content.