The ultra-precision wafer stage is an important mechatronic unit in a wafer scanner for manufacturing integrated circuits while its motion control is still the main concern. To overcome the performance-limiting trade-offs of fixed-gain discrete sliding mode control (DSMC), a novel variable-gain DSMC strategy with PID-type sliding surface is proposed for an ultra-precision wafer stage. Specially, PID-type sliding surface is employed to avoid the steady-state error induced by external disturbances. Via the exponential reaching law approach, DSMC with PID-type sliding surface is synthesized. Variable-gain control methodology is newly introduced into DSMC, and the control gain varies with the trajectory phase that the wafer stage is in and the tracking error magnitude. Performance assessment on a developed wafer stage validates that with nano-scale tracking accuracy the proposed strategy not only improves the low-frequency tracking ability without the amplification of high-frequency noise, but also possesses the excellent robustness to external disturbances.

This content is only available via PDF.
You do not currently have access to this content.