Emergency lane changes are often the best course of action when avoiding obstacles on the road, but this maneuver has the possibility of sending the vehicle out of control. The University of Washington EcoCAR team has a hybrid-electric vehicle outfitted with an electric drivetrain and variable torque control to each of the rear wheels. Each rear wheel has an electric motor that is independently controlled to provide torque to the wheel. A lateral vehicle dynamics model is used to develop a torque control strategy to improve the safety and maneuverability of a modified hybrid-electric 2016 Camaro as part of the EcoCAR 3 competition.

The specific scenario simulated is a two-lane lane change at a speed of 55 mph. We would like to increase the yaw and lateral accelerations that the vehicle can perform safely by controlling differing torques out of the two motors. Regulating these accelerations requires a control strategy over the left and right motor torques. Equal-torque control of the electric motors will be used as a baseline.

This content is only available via PDF.
You do not currently have access to this content.