In this paper, galloping vibrations of a lightly iced transmission line are investigated through a two-degree-of-freedom (2-DOF) nonlinear oscillator. The 2-DOF nonlinear oscillator is used to describe the transverse and torsional motions of the galloping cables. The analytical solutions of periodic motions of galloping cables are presented through generalized harmonic balanced method. The analytical solutions of periodic motions for the galloping cable are compared with the numerical solutions, and the corresponding stability and bifurcation of periodic motions are analyzed by the eigenvalues analysis. To demonstrate the accuracy of the analytical solutions of periodic motions, the harmonic amplitudes are presented. This investigation will help one better understand galloping mechanism of iced transmission lines.

This content is only available via PDF.
You do not currently have access to this content.