In literature, the classic parametrically excited pendulum is vastly studied. It consists of a pendulum vertically displaced with a harmonic motion in the support while it oscillates. The chaos in this mechanism may appear depending on the frequency and amplitude of excitation in superharmonic and subharmonic resonance. The double pendulum is also well analyzed in literature, but not under parametric excitation. Therefore, this is the novelty in the present paper. The present analysis considers a double pendulum under a harmonic excitation following the same idea performed previously for a single pendulum. The results are obtained based on methods, such as, phase portraits, Poincaré sections and bifurcation diagrams. The 0–1 tests analyze the presence of chaos while the parameters are varied. The dimensionless parameters take into account the excitation frequency and amplitude as mentioned for the classic parametric pendulum. In this case, we have the particular characteristic that the two pendulums have the same length, the same mass and the same friction coefficient in the joints. The types of motion observed include fixed points, oscillations, rotations and chaos. Results also demonstrated that there was a self-synchronization between these pendulums in ideal excitation.

This content is only available via PDF.
You do not currently have access to this content.