Skull deformation and vibration has been hypothesized to be an injury mechanism when the human head undergoes an impact scenario. The extent that skull deformation may increase the risk of traumatic brain injury, however, is not well understood. This computational study explains whether skull deformation has any impact on the variation of intracranial pressure (ICP). To this end, a finite element head model including major anatomical components of the human head was employed. The head model has been validated against ICP variations on the brain. The impact simulations were carried out using a rigid cylindrical impactor. The scenarios were frontal impacts with the impactor hitting the forehead of the head model at two impact severity levels. In order to examine the effect of skull elasticity on the stress wave propagation inside the cranium under an external applied force, the skull was also taken as a rigid body with the same density as the elastic one, and the result were compared with those obtained with the deformable skull. For the two cases, the variation of ICPs at the coup and countercoup sites were recorded and compared. The results of the study showed that, for the case studies presented here, the deformation of skull didn’t increase the level of ICP inside the brain. It was concluded that the skull rapid body motion might be responsible for brain injuries.

This content is only available via PDF.
You do not currently have access to this content.